Vector Transport-Free SVRG with General Retraction for Riemannian Optimization: Complexity Analysis and Practical Implementation
نویسندگان
چکیده
In this paper, we propose a vector transport-free stochastic variance reduced gradient (SVRG) method with general retraction for empirical risk minimization over Riemannian manifold. Existing SVRG methods on manifold usually consider a specific retraction operation, and involve additional computational costs such as parallel transport or vector transport. The vector transport-free SVRG with general retraction we propose in this paper handles general retraction operations, and do not need additional computational costs mentioned above. As a result, we name our algorithm S-SVRG, where the first “S” means simple. We analyze the iteration complexity of S-SVRG for obtaining an -stationary point and its local linear convergence by assuming the Lojasiewicz inequality, which naturally holds for PCA and holds with high probability for matrix completion problem. We also incorporate the Barzilai-Borwein step size and design a very practical S-SVRG-BB method. Numerical results on PCA and matrix completion problems are reported to demonstrate the efficiency of our methods.
منابع مشابه
Riemannian SVRG: Fast Stochastic Optimization on Riemannian Manifolds
We study optimization of finite sums of geodesically smooth functions on Riemannian manifolds. Although variance reduction techniques for optimizing finite-sums have witnessed tremendous attention in the recent years, existing work is limited to vector space problems. We introduce Riemannian SVRG (RSVRG), a new variance reduced Riemannian optimization method. We analyze RSVRG for both geodesica...
متن کاملA Fast Algorithm for Matrix Eigen-decompositionn
We propose a fast stochastic Riemannian gradient eigensolver for a real and symmetric matrix, and prove its local, eigengap-dependent and linear convergence. The fast convergence is brought by deploying the variance reduction technique which was originally developed for the Euclidean strongly convex problems. In this paper, this technique is generalized to Riemannian manifolds for solving the g...
متن کاملRiemannian stochastic variance reduced gradient
Stochastic variance reduction algorithms have recently become popular for minimizing the average of a large but finite number of loss functions. In this paper, we propose a novel Riemannian extension of the Euclidean stochastic variance reduced gradient algorithm (R-SVRG) to a manifold search space. The key challenges of averaging, adding, and subtracting multiple gradients are addressed with r...
متن کاملA Broyden Class of Quasi-Newton Methods for Riemannian Optimization
This paper develops and analyzes a generalization of the Broyden class of quasiNewton methods to the problem of minimizing a smooth objective function f on a Riemannian manifold. A condition on vector transport and retraction that guarantees convergence and facilitates efficient computation is derived. Experimental evidence is presented demonstrating the value of the extension to the Riemannian...
متن کاملLow-Rank Matrix Completion by Riemannian Optimization
The matrix completion problem consists of finding or approximating a low-rank matrix based on a few samples of this matrix. We propose a novel algorithm for matrix completion that minimizes the least square distance on the sampling set over the Riemannian manifold of fixed-rank matrices. The algorithm is an adaptation of classical non-linear conjugate gradients, developed within the framework o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017